Part Number Hot Search : 
2SK3704 01220 FAN105A MBR20100 74HC40 SSC2000 CAT811L U110B
Product Description
Full Text Search
 

To Download MW7IC18100NBR1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 1 rf device data freescale semiconductor rf ldmos wideband integrated power amplifiers the mw7ic18100n wideband integrated circuit is designed with on - chip matching that makes it usable from 1805 to 2050 mhz. this multi - stage structure is rated for 24 to 32 volt operation and covers all typical cellular base station modulations including gsm edge and cdma. final application ? typical gsm performance: v dd = 28 volts, i dq1 = 180 ma, i dq2 = 1000 ma, p out = 100 watts cw, 1805 - 1880 mhz or 1930 - 1990 mhz power gain ? 30 db power added efficiency ? 48% gsm edge application ? typical gsm edge performance: v dd = 28 volts, i dq1 = 215 ma, i dq2 = 800 ma, p out = 40 watts avg., 1805 - 1880 mhz or 1930 - 1990 mhz power gain ? 31 db power added efficiency ? 35% spectral regrowth @ 400 khz offset = - 63 dbc spectral regrowth @ 600 khz offset = - 80 dbc evm ? 1.5% rms ? capable of handling 5:1 vswr, @ 28 vdc, 1990 mhz, 100 watts cw output power ? stable into a 5:1 vswr. all spurs below - 60 dbc @ 1 mw to 120 w cw p out . features ? characterized with series equivalent large - signal impedance parameters and common source scattering parameters ? on - chip matching (50 ohm input, dc blocked) ? integrated quiescent current temperature compensation with enable/disable function (1) ? integrated esd protection ? 225 c capable plastic package ? rohs compliant ? in tape and reel. r1 suffix = 500 units per 44 mm, 13 inch reel. figure 1. functional block diagram figure 2. pin connections quiescent current temperature compensation (1) v ds1 rf in v gs1 rf out /v ds2 v gs2 nc nc rf in v gs1 rf out /v ds2 1 2 3 4 7 8 14 v gs2 9 10 11 v ds1 nc nc nc v ds1 rf in nc rf out /v ds2 13 6 12 5 (top view) note: exposed backside of the package is the source terminal for the transistors. 1. refer to an1977, quiescent current thermal tracking circuit in the rf integrated circuit family and to an1987, quiescent current control for the rf integrated circuit device family . go to http://www.freescale.com/rf. select documentation/application notes - an1977 or an1987. document number: mw7ic18100n rev. 2, 4/2008 freescale semiconductor technical data mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 1990 mhz, 100 w, 28 v gsm/gsm edge rf ldmos wideband integrated power amplifiers case 1618 - 02 to-270 wb-14 plastic mw7ic18100nr1 case 1621 - 02 to - 270 wb - 14 gull plastic mw7ic18100gnr1 case 1617 - 02 to-272 wb-14 plastic MW7IC18100NBR1 ? freescale semiconductor, inc., 2007, 2008. all rights reserved.
2 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 table 1. maximum ratings rating symbol value unit drain- source voltage v dss - 0.5, +65 vdc gate - source voltage v gs - 0.5, +6 vdc storage temperature range t stg - 65 to +200 c case operating temperature t c 150 c operating junction temperature (1,2) t j 225 c table 2. thermal characteristics characteristic symbol value (2,3) unit thermal resistance, junction to case gsm application stage 1, 28 vdc, i dq1 = 180 ma (p out = 100 w cw) stage 2, 28 vdc, i dq2 = 1000 ma r jc 2.0 0.51 c/w table 3. esd protection characteristics test methodology class human body model (per jesd22 - a114) o (minimum) machine model (per eia/jesd22 - a115) a (minimum) charge device model (per jesd22 - c101) iii (minimum) table 4. moisture sensitivity level test methodology rating package peak temperature unit per jesd 22 - a113, ipc/jedec j - std - 020 3 260 c table 5. electrical characteristics (t c = 25 c unless otherwise noted) characteristic symbol min typ max unit functional tests (in freescale test fixture, 50 ohm system) v dd = 28 vdc, p out = 100 w cw, i dq1 = 180 ma, i dq2 = 1000 ma, f = 1990 mhz. power gain g ps 27 30 31 db input return loss irl ? -15 -10 db power added efficiency pae 45 48 ? % p out @ 1 db compression point, cw p1db 100 112 ? w typical gsm edge performances (in freescale gsm edge test fixture, 50 ohm system) v dd = 28 vdc, i dq1 = 215 ma, i dq2 = 800 ma, p out = 40 w avg., 1805 - 1880 mhz or 1930 - 1990 mhz edge modulation. power gain g ps ? 31 ? db power added efficiency pae ? 35 ? % error vector magnitude evm ? 1.5 ? % rms spectral regrowth at 400 khz offset sr1 ? -63 ? dbc spectral regrowth at 600 khz offset sr2 ? -80 ? dbc 1. continuous use at maximum temperature will affect mttf. 2. mttf calculator available at http://www.freescale.com/rf . select software & tools/development tools/calculators to access mttf calculators by product. 3. refer to an1955, thermal measurement methodology of rf power amplifiers. go to http://www.freescale.com/rf . select documentation/application notes - an1955. (continued)
mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 3 rf device data freescale semiconductor table 5. electrical characteristics (t c = 25 c unless otherwise noted) (continued) characteristic symbol min typ max unit typical performances (in freescale test fixture, 50 ohm system) v dd = 28 vdc, i dq1 = 180 ma, i dq2 = 1000 ma, 1930 - 1990 mhz bandwidth gain flatness in 60 mhz bandwidth @ p out = 100 w cw g f ? 0.37 ? db average deviation from linear phase in 60 mhz bandwidth @ p out = 100 w cw ? 0.502 ? average group delay @ p out = 100 w cw, f = 1960 mhz delay ? 2.57 ? ns part - to - part insertion phase variation @ p out = 100 w cw, f = 1960 mhz, six sigma window ? ? 63.65 ? gain variation over temperature (-30 c to +85 c) g ? 0.048 ? db/ c output power variation over temperature (-30 c to +85 c) p1db ? 0.004 ? dbm/ c
4 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 figure 3. mw7ic18100nr1(gnr1)(nbr1) test circuit schematic ? 1900 mhz r2 rf input v gg2 z10 rf output c5 v dd2 1 2 3 4 5 8 9 14 12 11 10 nc nc nc dut c1 z8 quiescent current temperature compensation z1 nc z9 z12 z2 c16 r1 6 7 nc nc 13 c2 v gg1 c14 z14 z16 z15 c4 c8 c9 c6 c17 c3 c7 v dd1 z3 z4 c11 z5 c15 z13 z11 c13 c12 + z6 z7 c10 z11 0.880 x 0.256 microstrip z12 0.215 x 0.138 microstrip z13 0.215 x 0.252 microstrip z14 0.083 x 0.298 microstrip z15 0.083 x 0.810 microstrip z16 0.083 x 0.250 microstrip pcb arlon cuclad 250gx - 0300- 55 - 22, 0.030 , r = 2.55 z1 0.083 x 0.505 microstrip z2, z5 0.083 x 0.552 microstrip z3 0.083 x 0.252 microstrip z4 0.083 x 0.174 microstrip z6 0.083 x 1.261 microstrip z7 0.060 x 0.126 microstrip z8, z9 0.080 x 1.569 microstrip z10 0.880 x 0.224 microstrip table 6. mw7ic18100nr1(gnr1)(nbr1) test circuit component designations and values ? 1900 mhz part description part number manufacturer c1, c2, c3, c4, c5 6.8 pf chip capacitors atc100b6r8bt500xt atc c6, c7, c8, c9 10 f, 50 v chip capacitors grm55dr61h106ka88l murata c10, c11 0.2 pf chip capacitors atc100b0r2bt500xt atc c12, c13 0.5 pf chip capacitors atc100b0r5bt500xt atc c14 0.8 pf chip capacitor atc100b0r8bt500xt atc c15 1.5 pf chip capacitor atc100b1r5bt500xt atc c16 2.2 f, 16 v chip capacitor c1206c225k4rac kemet c17 470 f, 63 v electrolytic capacitor, radial 477kxm063m illinois capacitor r1, r2 10 k , 1/4 w chip resistors crcw12061001fkea vishay
mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 5 rf device data freescale semiconductor figure 4. mw7ic18100nr1(gnr1)(nbr1) test circuit component layout ? 1900 mhz cut out area mw7ic18100n rev. 2 c10 c11 c1 c2 c16 r1 r2 c4 c8 c9 c13 c12 c14 c15 c5 c6 c7 c3 c17
6 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 typical characteristics ? 1900 mhz g ps , power gain (db) irl, input return loss (db) f, frequency (mhz) 27 25 g ps v dd = 28 vdc, p out = 100 w cw i dq1 = 180 ma, i dq2 = 1000 ma 33 55 32 50 30 45 40 30 figure 5. power gain, input return loss and power added efficiency versus frequency @ p out = 100 watts cw ?5 ?20 31 29 28 35 ?10 ?15 pae pae, power added efficiency (%) f, frequency (mhz) figure 6. power gain, input return loss, evm and power added efficiency versus frequency @ p out = 40 watts avg. p out , output power (watts) cw 10 25 32 1 i dq2 = 1500 ma 30 28 26 200 figure 7. two - tone power gain versus output power @ i dq1 = 180 ma g ps , power gain (db) 31 27 29 750 ma 1250 ma p out , output power (watts) cw 10 25 34 1 i dq1 = 270 ma 32 30 28 200 figure 8. two - tone power gain versus output power @ i dq2 = 1000 ma g ps , power gain (db) 33 27 29 31 225 ma 100 100 g ps 26 32 0 60 irl ?20 ?10 irl, input return loss (db) ?5 ?15 31 50 30 40 29 30 28 20 27 10 pae, power added efficiency (%) g ps , power gain (db) 1880 pae irl 1900 1920 1940 1960 1980 2000 2020 2040 1880 1900 1920 1940 1960 1980 2000 2020 2040 evm 1000 ma 500 ma 26 180 ma 135 ma 90 ma evm, error vector magnitude (% rms) v dd = 28 vdc, p out = 40 w avg. i dq1 = 215 ma, i dq2 = 800 ma edge modulation v dd = 28 vdc, i dq1 = 180 ma f = 1960 mhz v dd = 28 vdc, i dq2 = 1000 ma f = 1960 mhz
mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 7 rf device data freescale semiconductor typical characteristics ? 1900 mhz figure 9. third order intermodulation distortion versus output power @ i dq1 = 180 ma ?50 ?10 i dq2 = 500 ma p out , output power (watts) pep 750 ma 10 ?20 ?30 ?40 200 ?60 1 intermodulation distortion (dbc) imd, third order v dd = 28 vdc, i dq1 = 180 ma f1 = 1960 mhz, f2 = 1960.1 mhz two?tone measurements, 100 khz tone spacing 100 1500 ma 1250 ma 1000 ma figure 10. third order intermodulation distortion versus output power @ i dq2 = 1000 ma ?50 ?10 i dq1 = 90 ma p out , output power (watts) pep 135 ma 10 ?20 ?30 ?40 200 ?60 1 intermodulation distortion (dbc) imd, third order v dd = 28 vdc, i dq2 = 1000 ma f1 = 1960 mhz, f2 = 1960.1 mhz two?tone measurements, 100 khz tone spacing 100 7th order 5th order 3rd order p out , output power (watts) pep figure 11. intermodulation distortion products versus output power imd, intermodulation distortion (dbc) v dd = 28 vdc, i dq1 = 180 ma i dq2 = 1000 ma, f1 = 1960 mhz, f2 = 1960.1 mhz two?tone measurements, 100 khz tone spacing ?60 0 10 ?20 ?40 100 ?80 1 400 ?10 ?30 ?50 ?70 0 0.1 10 ?20 ?30 ?40 ?50 ?80 two?tone spacing (mhz) figure 12. intermodulation distortion products versus tone spacing imd, intermodulation distortion (dbc) 1 v dd = 28 vdc, p out = 80 w (pep), i dq1 = 215 ma i dq2 = 800 ma, two?tone measurements (f1 + f2)/2 = center frequency of 1960 mhz im7?u im5?u im5?l im3?l im7?l im3?u ?10 ?60 ?70 26 58 p in , input power (dbm) 53 51 49 48 16 17 actual ideal p1db = 50.6 dbm (114.8 w) 52 50 18 19 figure 13. pulsed cw output power versus input power p out , output power (dbc) p3db = 51.32 dbm (135.51 w) p6db = 51.74 dbm (149.27 w) 54 55 56 57 20 21 22 23 24 v dd = 28 vdc, i dq1 = 180 ma, i dq2 = 1000 ma pulsed cw, 12 sec(on), 1% duty cycle f = 1960 mhz 25 200 10 40 0 60 v dd = 28 vdc i dq1 = 180 ma i dq2 = 1000 ma f = 1960 mhz t c = ?30  c 25  c 85  c ?30  c 10 1 25 20 15 30 20 10 p out , output power (watts) cw figure 14. power gain and power added efficiency versus output power g ps , power gain (db) pae , p o wer added effi c ien c y (%) g ps 35 30 100 50 40 pae 25  c 85  c 180 ma 270 ma 225 ma
8 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 typical characteristics ? 1900 mhz p out , output power (watts) cw figure 15. power gain versus output power 28 v 32 v 200 31 0 150 27 50 g ps , power gain (db) 29 100 v dd = 24 v 28 30 i dq1 = 180 ma i dq2 = 1000 ma f = 1960 mhz figure 16. evm versus frequency f, frequency (mhz) p out = 50 w avg. 30 w avg. v dd1 = 28 vdc i dq1 = 215 ma, i dq2 = 800 ma edge modulation evm, error vector magnitude (% ms) 2040 0 1880 3 1 1960 1940 1920 1900 4 2 5 1980 2000 2020 40 w avg. ?85 ?55 1880 sr @ 400 khz f, frequency (mhz) figure 17. spectral regrowth at 400 khz and 600 khz versus frequency ?60 ?65 p out = 50 w avg. sr @ 600 khz 40 w avg. spectral regrowth @ 400 khz and 600 khz (dbc) t c = ?30  c 25  c 85  c ?80 ?40 1 p out , output power (watts) avg. ?50 ?60 ?70 figure 18. spectral regrowth at 400 khz versus output power spectral regrowth @ 400 khz (dbc) ?70 ?75 ?80 v dd1 = 28 vdc, v dd2 = 28 vdc i dq1 = 215 ma, i dq2 = 815 ma f = 1960 mhz, edge modulation 10 200 t c = 85  c 25  c ?30  c ?90 ?50 1 p out , output power (watts) avg. ?60 ?70 figure 19. spectral regrowth at 600 khz versus output power spectral regrowth @ 600 khz (dbc) 10 100 200 100 p out , output power (watts) avg. 200 8 16 v dd1 = 28 vdc i dq1 = 215 ma i dq2 = 800 ma f = 1960 mhz edge modulation 12 10 0 10 1 6 20 80 40 30 0 10 pae ?30  c 85  c figure 20. evm and power added efficiency versus output power evm, error vector magnitude (% ms) pae, power added efficiency (%) t c = 85  c evm 1900 1920 1940 1960 1980 2000 2020 2040 30 w avg. 50 w avg. 30 w avg. 40 w avg. v dd1 = 28 vdc i dq1 = 215 ma, i dq2 = 800 ma f = 1960 mhz, edge modulation ?80 v dd1 = 28 vdc i dq1 = 215 ma, i dq2 = 800 ma f = 1960 mhz, edge modulation 14 4 2 25  c 25  c 50 60 70 100
mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 9 rf device data freescale semiconductor typical characteristics ? 1900 mhz 2600 12 32 1400 ?25 0 s21 f, frequency (mhz) figure 21. broadband frequency response s11 ?5 28 ?10 24 ?15 20 ?20 16 2400 2200 2000 1800 1600 s11 (db) s21 (db) 2040 29 36 1880 t c = ?30  c 25  c 34 32 30 f, frequency (mhz) figure 22. power gain versus frequency g ps , power gain (db) v dd = 28 vdc, p out = 40 w avg. i dq1 = 180 ma, i dq2 = 1000 ma 35 33 31 1920 1960 2000 1900 1940 1980 2020 85  c 250 10 9 90 t j , junction temperature ( c) figure 23. mttf versus junction temperature this above graph displays calculated mttf in hours when the device is operated at v dd = 28 vdc, p out = 100 w cw, and pae = 48%. mttf calculator available at http://www.freescale.com/rf. select software & tools/development tools/calculators to access mttf calculators by product. 10 7 10 6 10 5 110 130 150 170 190 mttf (hours) 210 230 2nd stage 1st stage 10 8 v dd = 28 vdc i dq1 = 180 ma, i dq2 = 1000 ma
10 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 gsm test signal figure 24. edge spectrum ?10 ?20 ?30 ?40 ?50 ?60 ?70 ?80 ?90 ?100 200 khz span 2 mhz center 1.96 ghz ?110 400 khz 600 khz 400 khz 600 khz (db) reference power vwb = 30 khz sweep time = 70 ms rbw = 30 khz
mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 11 rf device data freescale semiconductor z o = 50 z in z load f = 1880 mhz f = 2040 mhz f = 1880 mhz f = 2040 mhz v dd1 = v dd2 = 28 vdc, i dq1 = 180 ma, i dq2 = 1000 ma, p out = 100 w cw f mhz z in  z load  1880 67.48 - j17.89 2.324 - j3.239 1900 60.03 - j20.86 2.234 - j3.105 1920 53.65 - j21.94 2.135 - j2.965 1940 48.13 - j21.94 2.037 - j2.818 1960 43.52 - j21.22 1.936 - j2.666 1980 39.60 - j20.00 1.851 - j2.509 2000 36.14 - j18.52 1.765 - j2.355 2020 33.19 - j16.57 1.669 - j2.193 2040 30.96 - j14.58 1.559 - j2.012 z in = device input impedance as measured from gate to ground. z load = test circuit impedance as measured from drain to ground. figure 25. series equivalent input and load impedance ? 1900 mhz z in z load device under test output matching network
12 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 table 7. common source s - parameters (v dd = 28 v, i dq1 = 180 ma, i dq2 = 1000 ma, t c = 25  c, 50 ohm system) f s 11 s 21 s 12 s 22 f mhz |s 11 | ? |s 21 | ? |s 12 | ? |s 22 | ? 1500 0.612 118.5 6.369 69.06 0.002 102.9 0.615 47.74 1550 0.557 104.3 11.42 18.29 0.003 85.09 0.666 - 41.54 1600 0.491 88.33 16.92 - 34.34 0.005 59.06 0.844 - 113.4 1650 0.410 70.24 23.21 - 84.03 0.005 28.40 0.931 - 163.4 1700 0.313 48.99 30.49 - 135.7 0.006 7.983 0.887 155.6 1750 0.216 21.99 32.64 168.8 0.007 - 15.63 0.700 120.3 1800 0.131 - 22.83 32.93 114.0 0.006 - 35.27 0.475 95.71 1850 0.117 - 95.13 32.62 65.01 0.006 - 53.22 0.332 82.10 1900 0.185 - 146.3 32.58 20.45 0.006 - 77.03 0.252 68.30 1950 0.253 - 177.3 32.45 - 22.53 0.007 - 98.93 0.165 47.02 2000 0.303 160.4 32.41 - 65.29 0.007 - 108.4 0.052 8.742 2050 0.328 139.5 32.33 - 108.6 0.006 - 127.3 0.070 - 154.8 2100 0.331 117.9 32.50 - 152.7 0.008 - 145.8 0.161 179.9 2150 0.273 91.65 32.84 160.2 0.008 - 169.1 0.257 165.7 2200 0.141 64.27 32.52 109.2 0.008 162.7 0.424 150.3 2250 0.050 172.7 28.92 56.72 0.009 138.3 0.641 123.4 2300 0.194 163.4 21.30 8.112 0.007 112.6 0.804 91.99 2350 0.270 139.7 14.62 - 34.53 0.007 97.74 0.879 62.03 2400 0.288 118.9 9.878 - 72.70 0.007 84.37 0.910 34.57 2450 0.274 100.6 6.771 - 107.5 0.007 70.79 0.911 8.878 2500 0.236 83.35 4.579 - 141.3 0.007 55.31 0.903 - 16.73
mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 13 rf device data freescale semiconductor alternative peak tune load pull characteristics ? 1900 mhz 21 p2db = 52.43 dbm (175 w) p in , input power (dbm) v dd = 28 vdc, i dq1 = 180 ma i dq2 = 1000 ma, pulsed cw 12 sec(on) 1% duty cycle f = 1990 mhz 51 22 24 actual ideal p1db = 51.93 dbm (155.89 w) 53 52 49 23 p out , output power (dbm) p3db = 52.72 dbm (187.06 w) note: load pull test fixture tuned for peak output power @ 28 v 50 54 55 56 20 19 18 17 test impedances per compression level z source z load p3db 40.2 - j30.91 0.96 - j3.14 figure 26. pulsed cw output power versus input power @ 28 v
14 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 figure 27. mw7ic18100nr1(gnr1)(nbr1) test circuit schematic ? 1800 mhz r2 rf input v gg2 z10 rf output c5 v dd2 1 2 3 4 5 8 9 14 12 11 10 nc nc nc dut c1 z8 quiescent current temperature compensation z1 nc z9 z12 z2 c16 r1 6 7 nc nc 13 c2 v gg1 c14 z14 z16 z15 c4 c8 c9 c6 c17 c3 c7 v dd1 z3 z4 c11 z5 c15 z13 z11 c13 c12 + z6 z7 c10 z11 0.880 x 0.256 microstrip z12 0.215 x 0.138 microstrip z13 0.215 x 0.252 microstrip z14 0.083 x 0.298 microstrip z15 0.083 x 0.810 microstrip z16 0.083 x 0.250 microstrip pcb arlon cuclad 250gx - 0300- 55 - 22, 0.030 , r = 2.55 z1 0.083 x 0.505 microstrip z2, z5 0.083 x 0.552 microstrip z3 0.083 x 0.252 microstrip z4 0.083 x 0.174 microstrip z6 0.083 x 1.261 microstrip z7 0.060 x 0.126 microstrip z8, z9 0.080 x 1.569 microstrip z10 0.880 x 0.224 microstrip table 8. mw7ic18100nr1(gnr1)(nbr1) test circuit component designations and values ? 1800 mhz part description part number manufacturer c1, c2, c3, c4, c5 6.8 pf chip capacitors atc100b6r8bt500xt atc c6, c7, c8, c9 10 f, 50 v chip capacitors grm55dr61h106ka88l murata c10, c11 0.2 pf chip capacitors atc100b0r2bt500xt atc c12, c13 0.8 pf chip capacitors atc100b0r8bt500xt atc c14 1.2 pf chip capacitor atc100b1r2bt500xt atc c15 1.0 pf chip capacitor atc100b1r0bt500xt atc c16 2.2 f, 16 v chip capacitor c1206c225k4rac kemet c17 470 f, 63 v electrolytic capacitor, radial 477kxm063m illinois capacitor r1, r2 10 k , 1/4 w chip resistors crcw12061001fkea vishay
mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 15 rf device data freescale semiconductor figure 28. mw7ic18100nr1(gnr1)(nbr1) test circuit component layout ? 1800 mhz cut out area mw7ic18100n rev. 2 c10 c11 c1 c2 c16 r1 r2 c4 c8 c9 c13 c12 c14 c15 c5 c6 c7 c3 c17
16 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 typical characteristics ? 1800 mhz g ps , power gain (db) irl, input return loss (db) f, frequency (mhz) 26 25 g ps v dd1 = 28 vdc, p out = 100 w cw i dq1 = 180 ma, i dq2 = 1000 ma 32 55 31 50 29 45 40 30 figure 29. power gain, input return loss and power added efficiency versus frequency @ p out = 100 watts cw ?10 ?25 30 28 27 35 ?15 ?20 pae pae, power added efficiency (%) f, frequency (mhz) figure 30. power gain, input return loss, evm and power added efficiency versus frequency @ p out = 40 watts avg. p out , output power (watts) cw 10 27 33 1 i dq2 = 1500 ma 30 28 200 figure 31. two - tone power gain versus output power @ i dq1 =180 ma g ps , power gain (db) 31 29 750 ma 1250 ma p out , output power (watts) cw 10 26 36 1 i dq1 = 270 ma 32 30 28 200 figure 32. two - tone power gain versus output power @ i dq2 = 1000 ma g ps , power gain (db) 33 27 29 31 225 ma 100 100 g ps 25 32 0 60 irl ?20 ?25 irl, input return loss (db) ?10 ?15 31 50 30 40 29 30 28 20 27 10 pae, power added efficiency (%) g ps , power gain (db) 1760 irl 1780 1800 1820 1860 1880 1900 1940 1760 1780 1800 1820 1840 1860 1880 1900 1940 evm 1000 ma 500 ma 180 ma 135 ma 90 ma evm, error vector magnitude (% rms) v dd1 = 28 vdc, p out = 40 w avg. i dq1 = 215 ma, i dq2 = 800 ma edge modulation 1920 26 1920 ?30 1840 pae 32 v dd = 28 vdc, i dq1 = 180 ma f = 1840 mhz v dd = 28 vdc, i dq2 = 1000 ma f = 1840 mhz 34 35
mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 17 rf device data freescale semiconductor typical characteristics ? 1800 mhz figure 33. third order intermodulation distortion versus output power @ i dq1 = 180 ma ?50 ?10 i dq2 = 500 ma p out , output power (watts) pep 750 ma 10 ?20 ?30 ?40 200 ?60 1 intermodulation distortion (dbc) imd, third order v dd = 28 vdc, i dq1 = 180 ma f1 = 1840 mhz, f2 = 1840.1 mhz two?tone measurements, 100 khz tone spacing 100 1500 ma 1250 ma 1000 ma figure 34. third order intermodulation distortion versus output power @ i dq2 = 1000 ma ?50 ?10 i dq1 = 90 ma p out , output power (watts) pep 135 ma 10 ?20 ?30 ?40 200 ?60 1 intermodulation distortion (dbc) imd, third order v dd = 28 vdc, i dq2 = 1000 ma f1 = 1840 mhz, f2 = 1840.1 mhz two?tone measurements, 100 khz tone spacing 100 180 ma 225 ma 7th order 5th order 3rd order p out , output power (watts) pep figure 35. intermodulation distortion products versus output power imd, intermodulation distortion (dbc) v dd = 28 vdc, i dq1 = 180 ma i dq2 = 1000 ma, f1 = 1840 mhz, f2 = 1840.1 mhz two?tone measurements, 100 khz tone spacing ?60 0 10 ?20 ?40 100 ?80 1 400 ?10 ?30 ?50 ?70 0.1 10 ?20 ?30 ?40 ?50 two?tone spacing (mhz) figure 36. intermodulation distortion products versus tone spacing imd, intermodulation distortion (dbc) 1 v dd = 28 vdc, p out = 80 w (pep), i dq1 = 180 ma i dq2 = 1000 ma, two?tone measurements (f1 + f2)/2 = center frequency of 1840 mhz im7?u im5?u im5?l im3?l im7?l im3?u ?10 ?60 50 25 58 p in , input power (dbm) 53 51 49 48 15 17 actual ideal p1db = 50.539 dbm (113.21 w) 52 50 18 19 figure 37. pulsed cw output power versus input power p out , output power (dbc) p3db = 51.34 dbm (136.144 w) p6db = 51.876 dbm (154.028 w) 54 55 56 57 20 21 22 23 24 v dd = 28 vdc, i dq1 = 180 ma, i dq2 = 1000 ma pulsed cw, 12 sec(on), 1% duty cycle f = 1840 mhz 16 200 10 40 0 60 v dd = 28 vdc i dq1 = 180 ma i dq2 = 1000 ma f = 1840 mhz t c = ?30  c 25  c 85  c ?30  c 10 1 25 20 15 30 20 10 p out , output power (watts) cw figure 38. power gain and power added efficiency versus output power g ps , power gain (db) pae, power added efficiency (%) g ps 35 30 100 50 40 pae 25  c 85  c 270 ma
18 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 typical characteristics ? 1800 mhz p out , output power (watts) cw figure 39. power gain versus output power 28 v 32 v 200 32 0 150 27 50 g ps , power gain (db) 29 100 v dd = 24 v 28 30 i dq1 = 180 ma i dq2 = 1000 ma f = 1840 mhz figure 40. evm versus frequency f, frequency (mhz) p out = 50 w avg. 30 w avg. evm, error vector magnitude (% ms) 2 1 4 40 w avg. ?85 ?55 sr @ 400 khz f, frequency (mhz) figure 41. spectral regrowth at 400 khz and 600 khz versus frequency ?60 ?65 p out = 50 w avg. sr @ 600 khz 40 w avg. spectral regrowth @ 400 khz and 600 khz (dbc) t c = ?30  c 25  c 85  c ?80 ?40 1 p out , output power (watts) avg. ?50 ?60 ?70 figure 42. spectral regrowth at 400 khz versus output power spectral regrowth @ 400 khz (dbc) ?70 ?75 ?80 v dd1 = 28 vdc, v dd2 = 28 vdc i dq1 = 215 ma, i dq2 = 815 ma f = 1840 mhz, edge modulation 10 200 t c = 85  c 25  c ?30  c ?90 ?50 1 p out , output power (watts) avg. ?60 ?70 figure 43. spectral regrowth at 600 khz versus output power spectral regrowth @ 600 khz (dbc) 10 100 200 100 p out , output power (watts) avg. 200 8 14 v dd1 = 28 vdc i dq1 = 215 ma i dq2 = 800 ma f = 1840 mhz edge modulation 12 10 0 10 1 6 20 70 40 30 0 10 pae 85  c figure 44. evm and power added efficiency versus output power evm, error vector magnitude (% ms) pae , power added efficiency ( % ) t c = ?30  c evm 30 w avg. 50 w avg. 30 w avg. 40 w avg. v dd1 = 28 vdc i dq1 = 215 ma, i dq2 = 800 ma f = 1840 mhz, edge modulation ?80 v dd1 = 28 vdc i dq1 = 215 ma, i dq2 = 800 ma f = 1840 mhz, edge modulation 4 2 25  c 25  c 31 0 3 1760 1780 1800 1820 1840 1860 1880 1900 1940 1920 v dd = 28 vdc i dq1 = 215 ma, i dq2 = 800 ma edge modulation 1760 1780 1800 1820 1840 1860 1880 1900 1940 1920 85  c ?30  c 50 60 100
mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 19 rf device data freescale semiconductor typical characteristics ? 1800 mhz 29 37 t c = ?30  c 25  c 34 32 30 f, frequency (mhz) figure 45. power gain versus frequency g ps , power gain (db) v dd = 28 vdc, p out = 40 w avg. i dq1 = 180 ma, i dq2 = 1000 ma 35 33 31 85  c 36 1760 1780 1800 1820 1840 1860 1880 1900 1940 1920
20 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 z o = 75 z in z load f = 1920 mhz f = 1760 mhz f = 1920 mhz f = 1760 mhz v dd1 = v dd2 = 28 vdc, i dq1 = 180 ma, i dq2 = 1000 ma, p out = 100 w cw f mhz z in  z load  1760 71.78 + j40.05 2.983 - j3.974 1780 79.83 + j31.13 2.872 - j3.861 1800 84.35 + j19.44 2.757 - j3.745 1820 84.75 + j7.234 2.636 - j3.639 1840 81.21 - j4.076 2.535 - j3.506 1860 74.76 - j12.32 2.434 - j3.376 1880 67.49 - j17.89 2.324 - j3.239 1900 60.03 - j20.86 2.234 - j3.105 1920 53.65 - j21.94 2.135 - j2.965 z in = device input impedance as measured from gate to ground. z load = test circuit impedance as measured from drain to ground. figure 46. series equivalent input and load impedance ? 1800 mhz z in z load device under test output matching network
mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 21 rf device data freescale semiconductor alternative peak tune load pull characteristics ? 1800 mhz 21 p2db = 52.19 dbm (165.57 w) p in , input power (dbm) 51 22 24 actual p1db = 51.72 dbm (148.59 w) 53 52 49 23 p out , output power (dbm) p3db = 52.46 dbm (176.19 w) note: load pull test fixture tuned for peak output power @ 28 v 50 54 55 56 20 19 18 17 ideal v dd = 28 vdc, i dq1 = 180 ma i dq2 = 1000 ma, pulsed cw 12 sec(on) 1% duty cycle f = 1880 mhz test impedances per compression level z source z load p3db 83.04 - j2.44 1.36 - j3.19 figure 47. pulsed cw output power versus input power @ 28 v
22 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 package dimensions
mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 23 rf device data freescale semiconductor
24 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1
mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 25 rf device data freescale semiconductor
26 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1
mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 27 rf device data freescale semiconductor
28 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1
mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 29 rf device data freescale semiconductor
30 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1
mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 31 rf device data freescale semiconductor product documentation refer to the following documents to aid your design process. application notes ? an1907: solder reflow attach method for high power rf devices in plastic packages ? an1955: thermal measurement methodology of rf power amplifiers ? an1977: quiescent current thermal tracking circuit in the rf integrated circuit family ? an1987: quiescent current control for the rf integrated circuit device family ? an3263: bolt down mounting method for high power rf transistors and rfics in over - molded plastic packages engineering bulletins ? eb212: using data sheet impedances for rf ldmos devices revision history the following table summarizes revisions to this document. revision date description 0 may 2007 ? initial release of data sheet 1 june 2007 ? removed case operating temperature from maximum ratings table, p. 2. case operating temperature rating will be added to the maximum ratings table when parts? operating junction temperature is increased to 225 c. 2 apr. 2008 ? operating junction temperature increased from 200 c to 225 c in maximum ratings table, related ?continuous use at maximum temperature will affect mttf? footnote added and changed 200 c to 225 c in capable plastic package bullet, p. 1, 2 ? added case operating temperature limit to the maximum ratings table and set limit to 150 c, p. 2 ? updated pcb information to show more specific material details, figs. 3, 27, test circuit schematic, p. 4, 14 ? updated part numbers in tables 6, 8, component designations and values, to rohs compliant part numbers, p. 4, 14 ? replaced case outline 1617 - 01 with 1617 - 02, issue a, p. 22 - 24. revised cross - hatched area for exposed heat spreader. added pin numbers 1, 12, 13, and 14 to sheets 1 and 2. corrected mm min and max values for dimension a1 to 0.99 and 1.09, respectively. ? replaced case outline 1618 - 01 with 1618 - 02, issue a, p. 25 - 27. added pin numbers 1, 12, 13, and 14 and pin 1 index designation to sheet 1. corrected dimensions e and e1 on sheet 1. removed pin 5 designation from sheet 2. ? replaced case outline 1621 - 01 with 1621 - 02, issue a, p. 28 - 30. added pin numbers 1, 12, 13, and 14 and pin 1 index designation to sheet 1. corrected dimensions e and e1 on sheets 1 and 3. removed pin 5 designation from sheet 2.
32 rf device data freescale semiconductor mw7ic18100nr1 mw7ic18100gnr1 MW7IC18100NBR1 information in this document is provided solely to enable system and software implementers to use freescale semiconductor products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. freescale semiconductor reserves the right to make changes without further notice to any products herein. freescale semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does freescale semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ?typical? parameters that may be provided in freescale semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including ?typicals?, must be validated for each customer application by customer?s technical experts. freescale semiconductor does not convey any license under its patent rights nor the rights of others. freescale semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the freescale semiconductor product could create a situation where personal injury or death may occur. should buyer purchase or use freescale semiconductor products for any such unintended or unauthorized application, buyer shall indemnify and hold freescale semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that freescale semiconductor was negligent regarding the design or manufacture of the part. freescale  and the freescale logo are trademarks of freescale semiconductor, inc. all other product or service names are the property of their respective owners. ? freescale semiconductor, inc. 2007, 2008. all rights reserved. how to reach us: home page: www.freescale.com web support: http://www.freescale.com/support usa/europe or locations not listed: freescale semiconductor, inc. technical information center, el516 2100 east elliot road tempe, arizona 85284 +1 - 800- 521- 6274 or +1 - 480- 768- 2130 www.freescale.com/support europe, middle east, and africa: freescale halbleiter deutschland gmbh technical information center schatzbogen 7 81829 muenchen, germany +44 1296 380 456 (english) +46 8 52200080 (english) +49 89 92103 559 (german) +33 1 69 35 48 48 (french) www.freescale.com/support japan: freescale semiconductor japan ltd. headquarters arco tower 15f 1 - 8 - 1, shimo - meguro, meguro - ku, tokyo 153 - 0064 japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com asia/pacific: freescale semiconductor hong kong ltd. technical information center 2 dai king street tai po industrial estate tai po, n.t., hong kong +800 2666 8080 support.asia@freescale.com for literature requests only: freescale semiconductor literature distribution center p.o. box 5405 denver, colorado 80217 1 - 800- 441- 2447 or 303 - 675- 2140 fax: 303 - 675- 2150 ldcforfreescalesemiconductor@hibbertgroup.com document number: mw7ic18100n rev. 2, 4/2008


▲Up To Search▲   

 
Price & Availability of MW7IC18100NBR1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X